FISEVIER

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

H₂S does not regulate proliferation via T-type Ca²⁺ channels

Jacobo Elies, Emily Johnson, John P. Boyle, Jason L. Scragg, Chris Peers*

Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK

ARTICLE INFO

Article history: Received 8 April 2015 Available online 24 April 2015

Keywords: Proliferation T-type calcium channel Gasotransmitter Vascular smooth muscle Hydrogen sulfide

ABSTRACT

T-type Ca^{2+} channels (Cav3.1, 3.2 and 3.3) strongly influence proliferation of various cell types, including vascular smooth muscle cells (VSMCs) and certain cancers. We have recently shown that the gasotransmitter carbon monoxide (CO) inhibits T-type Ca^{2+} channels and, in so doing, attenuates proliferation of VSMC. We have also shown that the T-type Ca^{2+} channel Cav3.2 is selectively inhibited by hydrogen sulfide (H₂S) whilst the other channel isoforms (Cav3.1 and Cav3.3) are unaffected. Here, we explored whether inhibition of Cav3.2 by H₂S could account for the anti-proliferative effects of this gasotransmitter. H₂S suppressed proliferation in HEK293 cells expressing Cav3.2, as predicted by our previous observations. However, H₂S was similarly effective in suppressing proliferation in wild type (non-transfected) HEK293 cells and those expressing the H₂S insensitive channel, Cav3.1. Further studies demonstrated that T-type Ca^{2+} channels in the smooth muscle cell line A7r5 and in human coronary VSMCs strongly influenced proliferation. In both cell types, H₂S caused a concentration-dependent inhibition of proliferation, yet by far the dominant T-type Ca^{2+} channel isoform was the H₂S-insensitive channel, Cav3.1. Our data indicate that inhibition of T-type Ca^{2+} channel-mediated proliferation by H₂S is independent of the channels' sensitivity to H₂S.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In recent years ion channels have emerged as a major family of target proteins for modulation by the gasotransmitters carbon monoxide (CO) and hydrogen sulfide (H₂S) [1–4]. Indeed, many beneficial and detrimental actions of these gases involve ion channel modulation [5–7]. One particularly important cellular process that involves ion channel activity and is also modulated by gasotransmitters is proliferation: in the vasculature, for example, vascular smooth muscle cells (VSMCs) can undergo phenotypic change, becoming non-contractile, proliferative cells to adapt to varying physiological and pathological situations [8–10]. This is important not only in developmental vasculogenesis and vascular repair but also in the development of cardiovascular diseases [8,11,12]. Progression of cancers is also dependent on profound cellular proliferation [13].

Interestingly, induction of heme oxygenase-1 (HO-1), which generates CO along with biliverdin and iron from the degradation of heme, is associated with proliferative vascular diseases [14,15] and

E-mail address: c.s.peers@leeds.ac.uk (C. Peers).

much evidence suggests that CO accounts for the known antiproliferative effects of HO-1 in VSMCs [16–18]. HO-1 is also constitutively expressed in various types of cancer, where it may regulate proliferation and resistance to apoptosis, in part through formation of CO [19,20]. By contrast, the effects of H₂S on proliferation appear to be cell-type specific; *In vitro* studies have shown that H₂S donors such as NaHS slow proliferation of VSMCs [21] yet can increase endothelial cell proliferation [22], and in some forms of cancer, such as colon cancer, H₂S promotes proliferation [23].

Ca²⁺ influx into cells is a requirement for proliferation as it regulates the activity of key transcription factors such as NFAT (nuclear factor of activated T-cells), via Ca²⁺-dependent dephosphorylation by calcineurin [24]). The relative importance of different Ca²⁺ influx pathways contributing to proliferation are currently under investigation but there is compelling evidence for the involvement of voltage-gated T-type Ca²⁺ channels: in VSMCs, T-type Ca²⁺ channel expression increases during proliferation [25,26], and they are required for VSMC proliferation both *in vitro* and in neointima formation observed following vascular injury [26–30]. In numerous forms of cancer high expression of T-type Ca²⁺ channels has been observed and, as in VSMCs, their expression supports proliferation [31]. These channels therefore represent an important therapeutic target for the treatment of both proliferative vascular diseases and cancer.

^{*} Corresponding author. Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, University of Leeds, Clarendon Way, Leeds LS2 9JT, U.K. Fax: +44 113 343 4803.

We have previously reported that CO is an effective inhibitor of all three isoforms of T-type Ca^{2+} channels (Cav3.1–3.3; [32]). Further evidence indicates that HO-1 induction suppresses VSMC proliferation via CO-mediated inhibition of T-type Ca^{2+} channels [5]. More recently, we have demonstrated that H_2S can also inhibit T-type Ca^{2+} channels, but differs from CO in that it discriminates between subtypes; it is only effective in inhibiting Cav3.2, whilst Cav3.1 and Cav3.3 are unaffected by this gasotransmitter [33]. Given the known effects of H_2S on proliferation and the important involvement of T-type Ca^{2+} channels in this process, we have explored the possibility that H_2S , like CO, may regulate proliferation via inhibition of T-type Ca^{2+} channels.

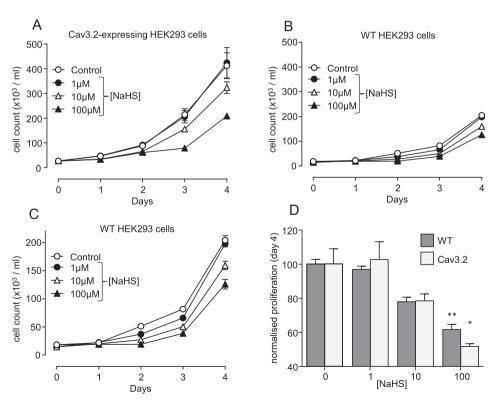
2. Methods

2.1. Cell culture

HEK293 cells: Wild type (WT; untransfected) HEK293 cells were cultured in minimum essential medium containing Earle's salts and L-glutamine, and supplemented with 10% (v/v) foetal bovine serum (FBS; Biosera, Ringmer UK), 1% (v/v) non-essential amino acids, 1% (v/v) antibiotic/antimycotic, and 0.1% (v/v) gentamicin. HEK293 cells stably expressing Cav3.1 and Cav3.2 T-type Ca²⁺ channels (a kind gift from Prof. E. Perez-Reyes; University of Virginia, Virginia USA), were cultured in WT HEK293 media, additionally supplemented with 1 mg/ml G-418 to maintain selection pressure (All reagents from Gibco, Paisley UK; unless otherwise stated). HEK293/Cav3.2 cells were used at passages between P1 and P8, and WT HEK293 cells were used at passages between P1 and P6.

A7r5 cells (a smooth muscle cell line derived from rat thoracic aorta) were obtained from the European Collection of Cell Cultures

(ECACC, Public Health England, Porton Down UK). They were grown in A7r5 complete media, consisting of Dulbecco's minimum essential medium containing 10% FBS (Biosera, Ringmer UK) and 1% glutamax (Gibco, Paisley UK).


Human coronary artery smooth muscle cells (hCASMCs) were obtained from ECACC (350-05a, Public Health England, Porton Down UK). They were grown in smooth muscle growth medium-2 supplemented with 5% FBS, growth factors (0.001% hEGF, 0.001% insulin, 0.002% hFGF-B) and gentamicin/amphotericin-B as described by manufacturers (Clonetics™ from Lonza, Germany). HCASMC were used at passages between P1 and P5.

All cell types were cultured in a humidified incubator at 37 $^{\circ}$ C (95% air: 5% CO₂) and passaged weekly.

2.2. Proliferation assay

Cells were plated at 1×10^4 /well and allowed to adhere for 6 h in 24-well plates in complete growth media, then exposed to serum free medium (SFM) overnight. On day 0 of the assay, SFM was removed and replaced with 1 ml of the relevant complete test media (vehicle or drug at the required concentration). To count cells, media was removed, cells were washed with 1 ml of Dulbecco's phosphate buffered saline (PBS) and 200 μ l of 0.05% trypsin-EDTA (Gibco, Paisley UK) was added (pre-warmed to 37 °C). Post-incubation, 800 μ l of complete media was added and the cell suspension centrifuged (600 g for 6 min). Following removal of 950 μ l of media, 50 μ l of supernatant remained with the cell pellet, which was then re-suspended following addition of 50 μ l of 0.4% Trypan Blue (Thermo Scientific, Rockford USA) to exclude non-viable cells.

Media was retained from one well of each treatment, processed in the same manner as the cell samples, and any cells present were

Fig. 1. NaHS inhibits proliferation in both Cav3.2-expressing HEK293 cells and wild type HEK293 cells. A. Line graph showing proliferation of Cav3.2-expressing HEK293 cells monitored over a 4-day period, in the absence (control, open circles) or presence of 1, 10 or 100 μM NaHS as indicated. B. Line graph showing (on the same scale as (A)) proliferation of wild type HEK293 cells monitored over a 4-day period, in the absence of drug (open circles), or during 1–100 μM NaHS as indicated. C. Same data as plotted in (B) but with a magnified Y axis. D. Bar graph showing proliferative response of both WT HEK293 cells (bold bars) and Cav3.2-expressing HEK293 cells (open bars) on day 4 (mean \pm s.e.m) in the absence and presence of NaHS, as indicated. Note normalised proliferation (compare to control in the absence of drug, n = 3 for each cell type) is very similar for both cell types at each NaHS concentration. Statistical significance: *p < 0.05; **P < 0.01.

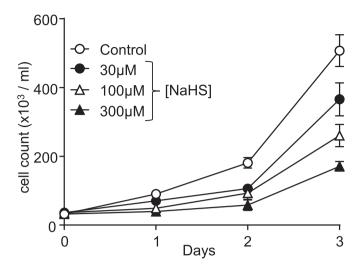
counted as an additional quantification of non-viable cells. Day 0 counts and media counts were performed using a hemocytometer. All other counts were performed using a TC10 Automated Cell Counter (Bio-Rad, Hemel Hempstead UK). Repeated counting from both test medium and trypsin suspension showed that no cells were lost in the counting procedure.

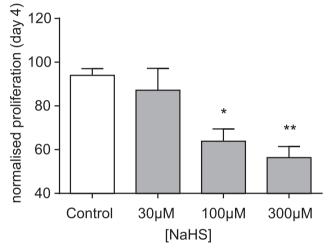
2.3. Real-Time polymerase chain reaction (RT-PCR)

To determine mRNA expression levels of Ca_v3.2 and Ca_v3.1 channels, T75 flasks containing cells at 70-80% confluence were washed with PBS and cells dissociated using 0.5 ml 0.05% trypsin-EDTA for 3 min (37 °C; 95% air: 5% CO₂). Enzyme activity was halted by adding 0.5 ml ice-cold PBS. The cell suspension was then centrifuged (600 g for 6 min) and RNA was generated from whole cell lysates using the Aurum Total RNA Mini Kit (Bio-Rad, Hemel Hempstead UK) following manufacturer's instructions. A cDNA template was generated from RNA samples using the iScript cDNA Synthesis Kit (Bio-Rad, Hemel Hempstead UK) following manufacturer's instructions (Reaction profile: 5 min at 25 °C, 30 min at 42 °C, 5 min at 85 °C, 5 min at 4 °C). Human Taqman probes (Applied Biosystems (ABI), UK) for Ca_v3.1 (CACNA1G), Ca_v3.2 (CACNA1H), and the endogenous housekeeper hypoxanthine phosphoribosyltransferase (HPRT1) were used with hCASMC. In all cases, 2 µl of sample cDNA and 18 µl of RT-PCR reaction mix (10 µl Tagman Universal PCR Master Mix, 0.5 µl Tagman probes (both from ABI), and 7.5 ul RNase/DNase-free water (Gibco Cambridge UK)) was added to the required wells of a 96-well PCR plate (Applied Biosystems, Cambridge UK), RT-PCR was carried out using an ABI 7500 Real-Time PCR system (Reaction profile: 2 min at 50 °C, 10 min at 95 °C, 15 s at 95 °C for 60 cycles, 1 min at 60 °C). Data were analysed using the 7500 software (ABI) and relative gene expression calculated using the $2^{-\Delta\Delta CT}$ method with HPRT1 as the endogenous control.

2.4. Electrophysiology

Ca²⁺ currents were recorded from A7r5 cells using the whole-cell configuration of the patch-clamp technique at room temperature (21–24 °C) as previously described [32] using an Axopatch 200A amplifier/Digidata 1300 interface controlled by Clampex 9.0 software (Molecular Devices, Sunnyvale, CA, USA). Offline analysis was performed using Clampfit 9.0. Pipettes (4–6 MΩ) were filled with (in mM): CsCl 120, MgCl₂ 2, EGTA 10, TEA-Cl 20, HEPES 10, Na-ATP 2, pH 7.2 (adjusted with CsOH). To optimise recording of T-type Ca²⁺ currents, cells were perfused with (in mM): NaCl 95, CsCl 5, MgCl₂ 0.6, CaCl₂ 15, TEA-Cl 20, HEPES 5, p-glucose 10, sucrose 30, pH 7.4 (adjusted with NaOH). Cells were voltage-clamped at -80 mV and either repeatedly depolarized to -20 mV (200 ms, 0.1 Hz) or to a series of test potentials ranging from -100 mV to +60 mV. All currents were low-pass filtered at 2 kHz and digitised at 10 kHz.


2.5. Data presentation and statistical analysis


Proliferation data are plotted example growth curves (with s.e.m., as each was performed in triplicate) and bar graphs representing normalised mean (with s.e.m.) proliferation on the final day of assessment, determined in at least 3 identical experiments. Statistical comparisons were made using ANOVA with Dunnett's post-hoc test.

3. Results and discussion

There is overwhelming evidence that H₂S is an important modulator of both physiological and pathological cardiovascular

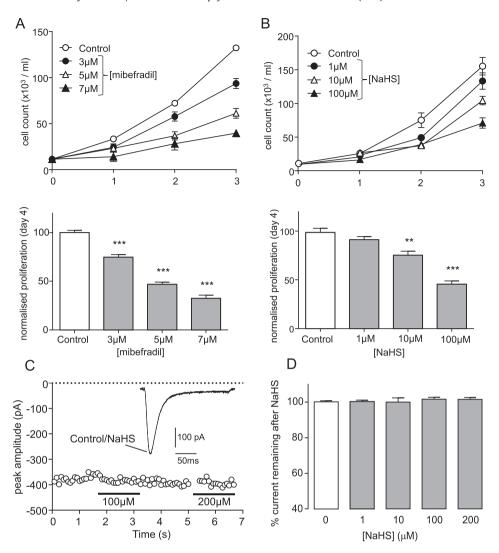
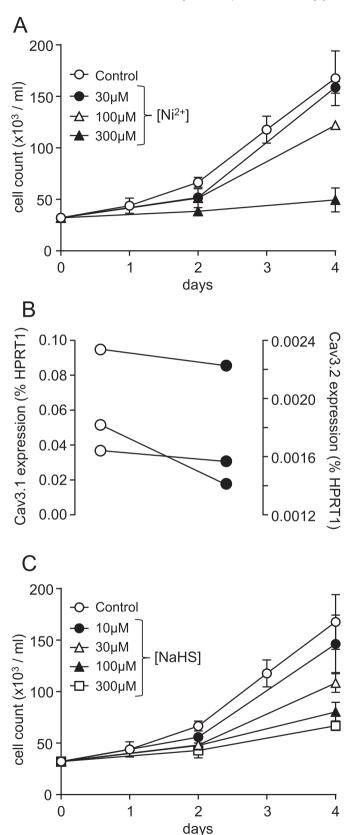

Cav3.1-expressing HEK293 cells

Fig. 2. NaHS inhibits proliferation in Cav3.1-expressing HEK293 cells. Upper: Line graph showing an example proliferation experiment using Cav3.1-expressing HEK293 cells monitored over a 3-day period, in the absence of drug (open circles), or in the presence of 30–300 μ M NaHS as indicated. Each point represents mean \pm s.e.m of 3 repeats. Lower: Mean (with s.e.m.) normalised proliferation determined on day 3 in three experiments exemplified in upper graph. *P < 0.05; **P < 0.01.

function. In addition to its tonic, physiological role as a regulator of blood pressure [34], it is also a major modifier of tissue remodelling resulting from cardiovascular diseases. Thus, for example, cardiac arteriolar hypertrophy and interstitial fibrosis observed in spontaneously hypertensive rats was prevented by daily administration of the H₂S donor NaHS [35]. Furthermore, neointima formation and VSMC proliferation following carotid artery balloon injury was suppressed following chronic NaHS administration [36]. Interestingly, this study also demonstrated that expression of cystathionine γ -lyase (CSE), the major vascular enzyme producing H₂S, was inhibited by balloon injury, a finding in agreement with its downregulation in hypertension [37]. Since (a) the expression of T-type Ca²⁺ channels increases in VSMC proliferation [25,26], (b) they are a prerequisite for VSMC proliferation and neointima formation following vascular injury [26-30] and (c) we have recently demonstrated that H₂S regulates the activity of the T-type Ca²⁺ channel Cav3.2 [33], the present study was conducted in order to investigate whether the inhibitory effects of H₂S on proliferation might be mediated via T-type Ca²⁺ channel inhibition. Our


Fig. 3. NaHS inhibits proliferation but does not modulate T-type Ca^{2+} currents in A7r5 cells. A. Upper: Line graph showing proliferation of A7r5 cells over a 3-day period in the absence (open circles) or presence of mibefradil. Each point represents mean \pm s.e.m of 3 experiments. Lower: Mean (with s.e.m.) normalised proliferation determined on day 3 in three experiments exemplified in upper graph. ***P < 0.001. B. Upper: as (A) but in the absence (open circles) or presence of NaHS. Lower: Mean (with s.e.m.) normalised proliferation determined on day 3 in three experiments exemplified in upper graph. ***P < 0.01; ***P < 0.001. C. Example, superimposed currents (identical in amplitude and time-course) evoked in a representative A7r5 cell before (Control) and during (NaHS) exposure to 100 μM NaHS. The time-series graph taken from this cell plots successive current amplitudes (each shown by an open circle) evoked by repeated step depolarizations (-80 mV to -20 mV, 200 ms duration, 0.2 Hz). NaHS (100 μM and 200 μM) was applied via the perfusate for the periods indicated by the horizontal bars. D. Bar graph showing mean (with s.e.m., n = 5 cells in each case) effects of NaHS at 1-200 μM.

investigation was prompted not only by the importance of H_2S and T-type Ca^{2+} channels in VSMC proliferation, but also by the fact that CO, another gasotransmitter known to inhibit VSMC proliferation, appears to act in this way via inhibition of T-type Ca^{2+} channels [5].

Proliferation was firstly monitored in HEK293 cells over-expressing the H₂S-sensitive T-type Ca²⁺ channel Cav3.2 [33]. Over a 4 day period, the increase in cell number was reduced in a concentration-dependent manner by H₂S (applied as the donor NaHS; Fig. 1A), consistent with the known ability of H₂S to inhibit this class of T-type Ca²⁺ channel. As previously described [5], the rate of proliferation observed in Cav3.2-expressing cells in the absence of applied H₂S was much greater than that observed in wild-type (WT; untransfected) HEK293 cells (Fig. 1B, plotted on the same Y axis scale as Fig. 1A for comparison). However, further reductions in this modest rate of proliferation were observed in WT cells in the presence of NaHS (Fig. 1B); these effects are more apparent when WT proliferation is plotted on a more restricted scale (Fig. 1C). Indeed, the degree of inhibition of proliferation

caused by NaHS was not significantly different between WT and Cav3.2-expressing HEK293 cells (Fig. 1D), as compared on day 4. This finding suggests that H₂S may not in fact inhibit proliferation specifically through inhibiting this class of T-type Ca²⁺ channel. To explore this possibility further, we examined proliferation in HEK293 cells stably expressing the H₂S insensitive T-type Ca²⁺ channel, Cav3.1 [33]. Our previous studies have indicated that current densities in the Cav3.1 and Cav3.2-expressing HEK293 cells are similar in magnitude (ca. 50–100 pA/pF [32,38]) and T-type currents are not detectable in WT cells (data not shown). Proliferation in these Cav3.1-expressing cells was rapid and monitored over a 3 day period. As shown in Fig. 2, H₂S also reduced proliferation in these cells in a concentration-dependent manner.

To explore any potential modulation of native T-type Ca²⁺ channels in VSMCs, and how this might impact on proliferation, we first explored its action in the rat aortic smooth muscle cell line, A7r5. We have previously shown that T-type (and not L-type) Ca²⁺ channels regulate proliferation in these cells [5] and, consistent

Fig. 4. NaHS inhibits proliferation in human coronary artery smooth muscle cells (hCASMCs). A. Line graph showing proliferation of hCASMC monitored over a 4-day period, in the absence (control, open circles) or in the presence of Ni²⁺. B. Expression levels for Cav3.1 and Cav3.2 mRNA determined in hCASMCs. Channel expression is plotted as percentage of expression of the housekeeping gene, hypoxanthine phosphoribosyltransferase (HPRT1), taken from the same samples used to detect channel

with this, we found that the T-type Ca²⁺ channel inhibitor mibefradil inhibited proliferation in a concentration-dependent manner (Fig. 3A). Exposure of cells to NaHS similarly reduced proliferation in a concentration-dependent manner (Fig. 3B). Our recent work has suggested that A7r5 cells express both Cav3.1 and Cav3.2, but by far the predominant channel was Cav3.1, as determined via RT-PCR [5]. To examine directly whether T-type currents could be modulated by H₂S in A7r5 cells, we recorded whole-cell Ca²⁺ currents under conditions designed to optimise T-type Ca²⁺ channel resolution (see Ref. [5] and Methods). Under these conditions, NaHS was without effect on T-type currents, as exemplified by Fig. 3B, and quantified in Fig. 3C. We never observed significant modulation of currents (n = 5 cells at each concentration examined). These findings strongly suggest that the ability of H₂S to inhibit A7r5 proliferation does not occur via its ability to inhibit T-type Ca²⁺ channels expressed in these cells.

We also explored modulation of proliferation in human coronary artery smooth muscle cells (hCASMCs). Consistent with a role for T-type Ca²⁺ channels in proliferation, we found that Ni²⁺ caused a concentration dependent reduction in hCASMC proliferation, as monitored over 4 days (Fig. 4A). In three repeated experiments (not shown) Ni^{2+} only significantly (P < 0.01) reduced proliferation at \geq 100 μ M, suggesting the involvement of Cav3.1 rather than Cav3.2, since Cav3.2 is much more sensitive to Ni²⁺ [39]. In agreement with this suggestion, we next examined the relative expression of mRNA for the T-type Ca²⁺ channel isoforms, Ca_v3.1 and Ca_v3.2, using RT-PCR. In three separate experiments, the Ca_v3.1 isoform was expressed at significantly higher levels than the Ca_v3.2 isoform, but both isoforms were detected (Fig. 4B: note different scales for each isoform). Despite the predominant expression of the H₂S insensitive channel Cav3.1, proliferation was reduced in a concentration-dependent manner by NaHS exposure (Fig. 4C). In three repeated experiments (not shown) the effects of NaHS were significant (P < 0.001) at 100 μ M and 300 μ M. The data in both A7r5 and hCASMCs are consistent with the idea that H₂S suppresses proliferation independently of T-type Ca²⁺ channel modulation.

Our findings confirm and extend previous awareness that T-type Ca²⁺ channel activity promotes proliferation, as observed when over-expression of either Cav3.1 or Cav3.2 increases HEK293 cell proliferation (Figs. 1 and 2), as we and others have shown previously [5,40]. We also confirm that T-type Ca²⁺ channels modulate proliferation in A7r5 cells, and provide new data suggesting a similar role in hCASMCs (Fig. 4). At present, the mechanism by which T-type Ca²⁺ channels, specifically, can promote proliferation is not understood. In each cell type studied, we also demonstrate that H₂S inhibits proliferation, consistent with a previous report in rat aortic A10 smooth muscle [21]. Our results are also consistent with the observation that VSMCs isolated from CSE^{-/-} mice show increased proliferation compared to wild type (WT) VSMCs, further indicating that H₂S has a 'breaking' effect on proliferation [41]. The major and unexpected finding of the present study, however, is that H₂S appears to suppress proliferation independent of any action on T-type Ca²⁺ channels. Thus, although the inhibition of proliferation in Cav3.2 expressing HEK293 cells by H₂S (Fig. 1) is consistent with its ability to inhibit this pro-proliferative channel, a similar degree of inhibition was also observed in WT cells which did not express Cav3.2. Furthermore, H₂S also inhibited proliferation of Cav3.1-expressing HEK293 cells (Fig. 2), despite the fact that this channel is insensitive to H₂S [33], and in A7r5 and hCASMCs, where

mRNA individual results from 3 separate experiments are shown. Note the difference in scales for each channel type. C. Line graph showing proliferation of hCASMCs monitored over a 4-day period, in the absence (open circles), or presence of NaHS as indicated.

the dominant T-type Ca²⁺ channel expressed is Cav3.1. It remains to be determined how H₂S suppresses proliferation, regardless of whether the proliferation is augmented by T-type Ca²⁺ channels.

The present data collectively suggest that, although CO can directly modulate VSMC proliferation via regulation of T-type Ca^{2+} channels, H_2S clearly differs in the means by which it exerts the same effect, despite its ability to inhibit at least one subtype of T-type Ca^{2+} channel. Thus, although ion channels represent a large and growing family of target proteins through which gasotransmitters exert their numerous, diverse biological activities, these agents clearly target additional signalling pathways with similar, important biological outcomes.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

This work was supported by the British Heart Foundation (PG/11/84/29146).

Transparency document

Transparency document related to this article can be found online at http://dx.doi.org/10.1016/j.bbrc.2015.04.087.

References

- [1] W.J. Wilkinson, P.J. Kemp, Carbon monoxide: an emerging regulator of ion channels, J. Physiol. 589 (2011) 3055–3062.
- [2] N.R. Prabhakar, C. Peers, Gasotransmitter regulation of ion channels: a key step in o2 sensing by the carotid body, Physiol. (Bethesda.) 29 (2014) 49–57.
- [3] C. Peers, J.P. Boyle, J.L. Scragg, M.L. Dallas, M.M. Al-Owais, N.T. Hettiarachichi, J. Elies, E. Johnson, N. Gamper, D.S. Steele, Diverse mechanisms underlying the regulation of ion channels by carbon monoxide, Br. J. Pharmacol. 172 (2014) 1546–1556.
- [4] C. Peers, C.C. Bauer, J.P. Boyle, J.L. Scragg, M.L. Dallas, Modulation of ion channels by hydrogen sulfide, Antioxid. Redox Signal. 17 (2012) 95–105.
- [5] H. Duckles, H.E. Boycott, M.M. Al-Owais, J. Elies, E. Johnson, M.L. Dallas, K.E. Porter, F. Giuntini, J.P. Boyle, J.L. Scragg, C. Peers, Heme oxygenase-1 regulates cell proliferation via carbon monoxide-mediated inhibition of Ttype Ca²⁺ channels, Pflugers Archiv. 467 (2015) 415–427.
- [6] C. Peers, D.S. Steele, Carbon monoxide: a vital signalling molecule and potent toxin in the myocardium, J. Mol. Cell. Cardiol. 52 (2012) 359–365.
- [7] M.L. Dallas, Z. Yang, J.P. Boyle, H.E. Boycott, J.L. Scragg, C.J. Milligan, J. Elies, A. Duke, J. Thireau, C. Reboul, S. Richard, O. Bernus, D.S. Steele, C. Peers, Carbon monoxide induces cardiac arrhythmia via induction of the late Na+ current, Am. J. Respir. Crit. Care Med. 186 (2012) 648–656.
- [8] G.K. Owens, M.S. Kumar, B.R. Wamhoff, Molecular regulation of vascular smooth muscle cell differentiation in development and disease, Physiol. Rev. 84 (2004) 767–801.
- [9] G.K. Owens, Regulation of differentiation of vascular smooth muscle cells, Physiol. Rev. 75 (1995) 487–517.
- [10] B.R. Wamhoff, D.K. Bowles, G.K. Owens, Excitation-transcription coupling in arterial smooth muscle, Circ. Res. 98 (2006) 868–878.
- [11] D. Gomez, G.K. Owens, Smooth muscle cell phenotypic switching in atherosclerosis, Cardiovasc. Res. 95 (2012) 156–164.
- [12] S.J. House, M. Potier, J. Bisaillon, H.A. Singer, M. Trebak, The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease, Pflugers Arch. 456 (2008) 769–785.
- [13] D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation, Cell 144 (2011) 646–674.
- [14] S.W. Kyter, J. Alam, A.M. Choi, Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications, Physiol. Rev. 86 (2006) 583–650.
- [15] T. Chang, L. Wu, R. Wang, Inhibition of vascular smooth muscle cell proliferation by chronic hemin treatment, Am. J. Physiol. Heart Circ. Physiol. 295 (2008) H999—H1007.
- [16] L.E. Otterbein, B.S. Zuckerbraun, M. Haga, F. Liu, R. Song, A. Usheva, C. Stachulak, N. Bodyak, R.N. Smith, E. Csizmadia, S. Tyagi, Y. Akamatsu,

- R.J. Flavell, T.R. Billiar, E. Tzeng, F.H. Bach, A.M. Choi, M.P. Soares, Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury, Nat. Med. 9 (2003) 183–190.
- [17] W. Durante, F.K. Johnson, R.A. Johnson, Role of carbon monoxide in cardiovascular function, J. Cell Mol. Med. 10 (2006) 672–686.
- [18] W. Durante, Heme oxygenase-1 in growth control and its clinical application to vascular disease, J. Cell Physiol. 195 (2003) 373–382.
- [19] A. Jozkowicz, H. Was, J. Dulak, Heme oxygenase-1 in tumors: is it a false friend? Antioxid. Redox Signal. 9 (2007) 2099—2117.
- [20] M.M. Al-Owais, J.L. Scragg, M.L. Dallas, H.E. Boycott, P. Warburton, A. Chakrabarty, J.P. Boyle, C. Peers, Carbon monoxide mediates the anti-apoptotic effects of heme oxygenase-1 in medulloblastoma DAOY cells via K+ channel inhibition, J. Biol. Chem. 287 (2012) 24754–24764.
- [21] R. Baskar, A. Sparatore, S.P. Del, P.K. Moore, Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative inhibit rat vascular smooth muscle cell proliferation. Eur. J. Pharmacol. 594 (2008) 1—8.
- [22] R. Wang, Signaling pathways for the vascular effects of hydrogen sulfide, Curr. Opin. Nephrol. Hypertens. 20 (2011) 107–112.
- [23] C. Szabo, C. Coletta, C. Chao, K. Modis, B. Szczesny, A. Papapetropoulos, M.R. Hellmich, Tumor-derived hydrogen sulfide, produced by cystathioninebeta-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer, Proc. Natl. Acad. Sci. U.S.A 110 (2013) 12474—12479.
- [24] M. Barbado, K. Fablet, M. Ronjat, W.M. De, Gene regulation by voltage-dependent calcium channels, Biochim. Biophys. Acta 1793 (2009) 1096—1104.
- [25] S. Richard, D. Neveu, G. Carnac, P. Bodin, P. Travo, J. Nargeot, Differential expression of voltage-gated Ca(2+)-currents in cultivated aortic myocytes, Biochim. Biophys. Acta 1160 (1992) 95–104.
- [26] T. Kuga, S. Kobayashi, Y. Hirakawa, H. Kanaide, A. Takeshita, Cell cycle—dependent expression of L- and T-type Ca2+ currents in rat aortic smooth muscle cells in primary culture, Circ. Res. 79 (1996) 14–19.
- [27] R. Schmitt, J.P. Clozel, N. Iberg, F.R. Buhler, Mibefradil prevents neointima formation after vascular injury in rats. Possible role of the blockade of the Ttype voltage-operated calcium channel, Arterioscler. Thromb. Vasc. Biol. 15 (1995) 1161–1165.
- [28] D.M. Rodman, K. Reese, J. Harral, B. Fouty, S. Wu, J. West, M. Hoedt-Miller, Y. Tada, K.X. Li, C. Cool, K. Fagan, L. Cribbs, Low-voltage-activated (T-type) calcium channels control proliferation of human pulmonary artery myocytes, Circ. Res. 96 (2005) 864—872.
- [29] L. Lipskaia, J.S. Hulot, A.M. Lompre, Role of sarco/endoplasmic reticulum calcium content and calcium ATPase activity in the control of cell growth and proliferation, Pflugers Arch. 457 (2009) 673–685.
- [30] B.H. Tzeng, Y.H. Chen, C.H. Huang, S.S. Lin, K.R. Lee, C.C. Chen, The Cav3.1 T-type calcium channel is required for neointimal formation in response to vascular injury in mice, Cardiovasc. Res. 96 (2012) 533–542.
- [31] B. Dziegielewska, L.S. Gray, J. Dziegielewski, T-type calcium channels blockers as new tools in cancer therapies, Pflugers Arch. 466 (2014) 801–810.
- [32] H.E. Boycott, M.L. Dallas, J. Elies, L. Pettinger, J.P. Boyle, J.L. Scragg, N. Gamper, C. Peers, Carbon monoxide inhibition of Cav3.2 T-type Ca2+ channels reveals tonic modulation by thioredoxin, FASEB J. 27 (2013) 3395–3407.
- [33] J. Elies, J.L. Scragg, S. Huang, M.L. Dallas, D. Huang, D. MacDougall, J.P. Boyle, N. Gamper, C. Peers, Hydrogen sulfide inhibits Cav3.2 T-type Ca2+ channels, FASEB J. 28 (2014) 5376–5387.
- [34] G. Yang, L. Wu, B. Jiang, W. Yang, J. Qi, K. Cao, Q. Meng, A.K. Mustafa, W. Mu, S. Zhang, S.H. Snyder, R. Wang, H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase, Science 322 (2008) 587–590.
- [35] Y.X. Shi, Y. Chen, Y.Z. Zhu, G.Y. Huang, P.K. Moore, S.H. Huang, T. Yao, Y.C. Zhu, Chronic sodium hydrosulfide treatment decreases medial thickening of intramyocardial coronary arterioles, interstitial fibrosis, and ROS production in spontaneously hypertensive rats, Am. J. Physiol. Heart Circ. Physiol. 293 (2007) H2093—H2100.
- [36] Q.H. Meng, G. Yang, W. Yang, B. Jiang, L. Wu, R. Wang, Protective effect of hydrogen sulfide on balloon injury-induced neointima hyperplasia in rat carotid arteries, Am. J. Pathol. 170 (2007) 1406–1414.
- [37] L. Li, P.K. Moore, Putative biological roles of hydrogen sulfide in health and disease: a breath of not so fresh air? Trends Pharmacol. Sci. 29 (2008) 84–90.
- [38] I.M. Fearon, A.D. Randall, E. Perez-Reyes, C. Peers, Modulation of recombinant T-type Ca2+ channels by hypoxia and glutathione, Pflugers Arch. 441 (2000) 181–188.
- [39] J.H. Lee, J.C. Gomora, L.L. Cribbs, E. Perez-Reyes, Nickel block of three cloned Ttype calcium channels: low concentrations selectively block alpha1H, Biophys. J. 77 (1999) 3034–3042.
- [40] P. Lory, I. Bidaud, J. Chemin, T-type calcium channels in differentiation and proliferation, Cell. Calcium 40 (2006) 135—146.
- [41] G. Yang, L. Wu, S. Bryan, N. Khaper, S. Mani, R. Wang, Cystathionine gammalyase deficiency and overproliferation of smooth muscle cells, Cardiovasc. Res. 86 (2010) 487–495.